MPPSC AE CE

Previous Year Paper 2017 Paper - II

manna letter

मध्यप्रदेश लोक सेवा आयोग रेसीडेन्सी एरिया इन्दौर

क्रमांक : 174 / 69 / 2011 / प- 9

इन्दौर, दिनांक 16.07.2017

राज्य अभियांत्रिकी सेवा प्रारंभिक परीक्षा -2017 प्रावधिक उत्तर कुंजी -:: विज्ञप्ति ::-

आयोग के विज्ञापन क्रमांक-03/परीक्षा/2017 दिनांक 08.03.2017 के अतर्गत आयोजित राज्य अभियात्रिकी सेवा प्रारंभिक परीक्षा -2017 के प्रथम प्रश्न पत्र— सामान्य अभियाय्यता एव द्वितीय प्रश्न पत्र के विषय— सिविल इंजीनियरिंग, मेकेनिकल इंजीनियरिंग एवं इंलेक्ट्रिकल इंजीनियरिंग की परीक्षा दिनांक-16.07.2017 के वस्तुनिष्ठ प्रकार के प्रश्न पत्रों की प्रावधिक उत्तर कुंजी परीक्षा परिणाम बनाने के पूर्व आयोग की वेबसाईट पर प्रकाशित की जा रही है। अभ्यर्थी आयोग की वेबसाईट पर अपना रोल नंबर एवं प्रवेश पत्र पर दिये गये पासवर्ड की सहायता से लॉग-इन कर अपनी रिस्पांस शीट का अवलोकन कर सकते हैं। यदि इस प्रावधिक उत्तर कुंजी के संबंध में किसी परीक्षार्थियों को कोई आपत्ति हो तो वे औनलाईन आपत्तियां 07 दिवस के अन्दर प्रस्तुत कर सकते हैं। इस हेतु अभ्यर्थी प्रश्न क्रमांक, सदर्भ ग्रंथों का नाम एवं दस्तावेज सलग्न करें। प्रावधिक उत्तर कुंजी आयोग की वेबसाईट पर अपलोड होने की तिथि से 07 दिवस की समयाविध के पश्चात प्राप्त आपत्तियों पर विवार नहीं किया जायेगा। यह विज्ञप्ति आयोग की वेबसाईट www.mppsc.com & www.mppsc.nic.in, www.mppscdemo.in पर दिनाक 1607.2017 से उपलब्ध है।

(डॉ एमएल. गोखरु(जैन) प्रभारी परीक्षा नियंत्रक

State Engineering Services Exam - 2017

(Model Answer Key)

Civil Engineering

Q1	: As per the Indian Standard (IS) 456: 2000, if f_{ck} is the characteristic strength of concrete, the tensile strength of the concrete is
A	$0.7\sqrt{f_{ck}}$
В	$0.5\sqrt{f_{ck}}$
С	$0.87\sqrt{f_{ck}}$
D	$0.46\sqrt{f_{ck}}$
Ans	swer Key: A
Q2	2: Maximum depth of neutral axis for singly reinforced beam with Fe500 is (here, depth of the beam = d)
A	0.44 <i>d</i>
В	0.46 d
С	0.48 d
D	0.53 d
Ans	swer Key: B
Q3	3: The minimum area of steel required per meter length of a slab with overall depth of 100 mm consisting of steel grade Fe500 is
A	96 mm ²
В	150 mm ²
С	120 mm ²
D	Insufficient data
Ans	swer Key: C
Q4	: For a square reinforced concrete (RC) column with cross-section of 300 mm x 300 mm having an effective length of 2500 mm, determine the minimum eccentricity
A	15 mm
В	30 mm
С	20 mm
D	None of these
Ans	swer Key: C

Q5: Determine the plan area of a footing carrying load of 1500 kN from 300 mm square column containing 20 mm diameter bars as longitudinal steel. The safe bearing capacity of the soil is 120 kN/m^2 .

A	12.5 m ²		
В	8.33 m^2		
С	12.63 m^2		
D	14.38 m^2		
An	swer Key: A		
Q	5: The permissible stress in steal (σ_{st}) is 130 MPa in a water tank of diameter 1.3 m which is designed to resist direct tensile force (T) of 260 kN per meter width. Determine the required area of tension steel in mm ² /m.		
A	500		
В	2000		
С	33800		
D	2×10^9		
An	swer Key: B		
O	Q7: Determine the volume of a 5m diameter bunker to store 50 tonnes of coal having density of 10kN/m ³		
A	5 m ³		
В	20 m^3		
С	50 m ³		
	500 m ³		
D	swer Key: C		
7 111	SWEI KCY. C		
Q8	3: In which one of the following post-tensioning anchorage systems, the high-tension bars are threaded at their ends?		
A	Gifford-Udall		
В	Freyssinet		
С	Lee-McCall Control Con		
D	Magnel-Blaton		
An	swer Key: C		
Q	esulting from dead loads and imposed loads		
A	250		
В	300		
С	180		
D	350		
An	swer Key: C		

Q10 A solid steel plate having ultimate strength of 410 MPa, the design strength in rupture (N/mm²) is

:	
A	250
В	295.2
С	335.45
D	410
Ans	swer Key: B
Q1:	A steel plate of size 250 mm x 150 mm x 10mm with holes for two number of 16 mm diameter bolts having ultimate strength of 410 MPa, the design strength of plate in rupture of critical section is
A	336 kN
В	382 kN
С	365 kN
D	280 kN
Ans	swer Key: A
	53
Q1	A compression member having gross and effective cross-sectional areas of 1500 mm ² and 1250 mm ² , respectively. If the design compressive stress is 150 MPa, the design compressive strength of the column will be
A	8.33 kN
В	10 kN
C	188 kN
D	225 kN
Ans	swer Key: C
Q 1	A uniform beam of length 6m carries ultimate load of 20 kN/m inclusive of self-weight, the design shear force is
A	120 kN
В	90 kN
С	60 kN
D	30 kN
Ans	swer Key: C
Q1:	In the design of a plate girder, the outstand of web stiffener from the face of the web is restricted to (thickness of stiffener = t_q ; and yield stress ratio = ε)
A	$12 t_q \varepsilon$
В	$14 t_q \varepsilon$
С	$16 t_q \varepsilon$
D	$20 t_q \mathcal{E}$
Ans	swer Key: D

Q1:	Q15 To prevent buckling of the top edge of a gusset plate due to bending compression, the outstand of the gusset plate from the edge of column should be limited to (thickness of plate = t ; yield stress ratio = ε)		
A	9.40 tε		
В	$8.40 t\varepsilon$		
C	$13.6 t\varepsilon$		
D	29.3 tε		
Ans	swer Key: C		
Q1 :	6 In roof truss purlins, the sag rods are designed as		
A	Compression members		
В	Laterally supported beams		
С	Laterally unsupported beams		
D	Tension members		
Ans	swer Key: D		
Q1	7 Wind load on steel roof truss for an industrial building will depend on		
A	Location of the structure		
В	Height of the structure		
C	Shape of the structure		
D	All of these		
Ans	Answer Key: D		
Q1	A fixed beam of length L is subjected to concentrated load W at mid-span, the collapse load is (plastic moment = M_p ; length of beam = L)		
A	$6M_p/L$		
В	$8M_p/L$		
С	$16M_p/L$		
D	$4M_p/L$		
Ans	swer Key: B		
Q1	19 The values of displacements in {D} necessary to ensure the equilibrium of the joints are determined using the relation (displacement vector={D}; stiffness matrix =[K]; and load vector ={P})		
:	(displacement vector= $\{D\}$, strinless matrix = $[K]$, and load vector = $\{F\}$) $\{P\}+[K]\{D\}=0$		
A	$\{D\}+[K]\{P\}=0$		
В	$\{P\}\{D\}+[K]=0$		
C			
D	$ [K]{P}=0 $		

Q20 In the flexibility matrix method of analysis, the values of redundant forces necessary to ensure geometric continuity of structure are determined by using relation (displacement at release due to applied loading = D_p ; flexibility matrix = F; redundant forces on released structure = X_R)

```
A [F]+\{D_p\}\{X_R\}=0
```

$$B = \{D_p\} + [F]\{X_R\} = 0$$

$$C \quad \{X_R\} + [F]\{D_p\} = 0$$

$$D [F]{D_p}=0$$

Answer Key: B

Q21 Using slope-deflection method, the stiffness K_{AB} and K_{BC} of a beam shown below respectively are

A $\frac{1.5 \, EI}{8}$ and $\frac{2 \, EI}{8}$

B
$$\frac{EI}{2}$$
 and $\frac{3EI}{8}$

 $C = \frac{3EI}{8}$ and $\frac{EI}{2}$

D
$$\frac{1.5\,EI}{8}$$
 and $\frac{EI}{4}$

Answer Key: C

Q22 The strain energy due to torsion is (torsion = T; modulus of elasticity = E; moment of inertia = I; shear modulus = G; polar moment of area = J)

A
$$\int \frac{T^2 dx}{2EI}$$

 $\mathbf{B} \int \frac{T^2 dx}{2GJ}$

 $C \int \frac{T dx}{2EI}$

 $\int \frac{T dx}{2GJ}$

Answer Key: B

Q23 In two-hinged arch, how many unknown forces exist?

:

One unknown

В	Two unknowns
C	Three unknowns
D	Four unknowns
Ans	swer Key: D
02	24 The area under β - distribution curve is divided into two equal parts by
:	- The area and p abarrounon curve is divided into two equal parts by
A	Most likely time
В	Expected time
С	Optimistic time
D	Pessimistic time
Ans	swer Key: B
02	25 Select the incorrect statement.
:	25 Select the incorrect statement.
A	Earliest start of an activity is the early event time of the node it leaves
В	Latest finish of an activity is the late event time of the node it enters
С	Latest start of an activity is its latest finish minus its duration
D	Earliest finish of an activity is the late event time of the node it enters minus its duration
Ans	swer Key: D
01	Which of the following estivity is non critical in the project given in the table below?
Q2 :	Which of the following activity is non-critical in the project given in the table below? Activity Predecessor Duration Cost slope Workers/day
	P 3 20 5 Q 4 30 4
	R P 4 25 4
	S P,Q 3 25 5 T R 3 15 5
	U R,S 4 55 4
A	P
В	R
C	T
D	U
	swer Key: C
Q2 :	There are three parallel paths in a part of a network between a bursting node and the next merging node with only one activity in each path. The minimum number of dummy arrows needed will be
A	Zero
В	1
C	2
D	3

Ans	Answer Key: C		
Q2:	Q28 Among the following excavators, the most suitable excavator for hard digging above track level will be:		
A	Back hoe		
В	Front shovel		
С	Scraper		
D	Dragline		
Ans	swer Key: B		
Q2:	Q29 Vibrating compactor is ideally suited for:		
A	Manual towing and compacting any type of soil with varying moisture content		
В	Compacting fly ash masses with any moisture content		
С	Compacting cohesionless granular material with any moisture content		
D	Compacting all fine grained materials having adequate moisture content		
Ans	swer Key: C		
Q3 :	Site order book is used for recording		
A	Instructions of the executive engineer		
В	Construction measurements		
С	Requisition of plants and equipments		
D	Indents for materials to be ordered		
Ans	swer Key: A		
Q3 :	Sensitivity analysis is a study of		
A	Comparison of profit and loss		
В	Comparison of assets and liabilities		
С	Change in output due to change in input		
D	Economics of cost and benefits of the project		
Ans	swer Key: C		
Q3 :	If the excavation of earth is done manually then it costs Rs. 100 per cum. A machine can excavate at a fixed cost of Rs. 40,000 plus a variable cost Rs. 20 per cum. The quantity of the earth for which the cost of excavation by machine will be equal to the cost of excavation by machine will be equal to the cost by manual excavation is		
A	500 cum		
В	1000 cum		
C	1500 cum		

ı	
D	2000 cum
Ans	swer Key: A
Q3 :	While assessing rate of return on certain investments, the investor assumes certain interest rate and calculates his net present value of all his cash inflows and outflows. Which of following will be correct?
A	If net present value is positive for the assumed value of interest rate, the actual rate of return will be higher than assumed interest rate
В	If net present value is positive for the assumed value of interest rate, the actual rate of return will be lower than the assumed interest rate
С	It cannot be assessed in the absence of cost of capital
D	It cannot be assessed in the absence of actual loan period
Ans	swer Key: A
Q3 :	The system of organization introduced by F.W. Taylor is known as
A	Effective organization
В	Functional organization
С	Line and staff organization
D	Line organization
Ans	swer Key: B
Q3 :	5 Liquidated damage refers to
A	Damages of walls, plasters and paints due to gushing of liquid or rain
В	Penalty cost to rectify dampness in the buildings arising out of gushing of liquid or rain
С	Penalty cost to rectify sub- standard quality of work
D	Penalty for delaying the work beyond agreed date
Ans	swer Key: D
Q3 :	A stream having wetted area (A) of 500 m ² and wetted perimeter (P) of 150 m, the hydraulic mean radius in meter is
A	650
В	3.33
С	0.3
D	350
Ans	swer Key: B
Q3 :	Look at the following information for a completely mixed biological reactor: tank volume = 200 m ³ ; flow rate = 50 m ³ /day; incoming substrate concentration = 95 mg BOD ₅ /L. Calculate effluent BOD ₅ (Given K_s = 60 mg BOD ₅ /L; k_d = 0.06/day; μ_m = 3 /day)

6.92 mg/L

В	6.80 mg/L
C	7.0 mg/L
D	7.2 mg/L
An	swer Key: A
Q3 :	Ground water contaminated with TCE is treated with powdered activated carbon by sorption (isotherm : $Q_{eq} = 129(C_{eq})^{0.73}$ where Q_{eq} is mass of TCE adsorbed on PAC (mg/mg PAC); C_{eq} is concentration of dissolved TCE in water (mg/L)). If TCE concentration in water is 1 mg/L, what mass concentration of PAC must be used (mg PAC/L water) to reduce TCE concentration to 0.005 mg/L?
A	0.3690 mg /L
В	0.45 mg /L
С	0.35 mg /L
D	0.40 mg /L
Ans	swer Key: A
Q3 :	A filter bed is composed of 12 inches of uniform anthracite with an average size of 1.6 mm for a filtration rate of 4 gal/ft²/min (or 160 L/min/m²) (temperature is 20°C; particle shape factor: 0.50; kinematic viscosity: 1.091 x 10 ⁻⁵ ft²/s). Calculate Reynolds number?
A	2.0
В	2.15
С	2.3
D	3.0
Ans	swer Key: B
Q4 :	40 A solution has 100 mg/L ammonium ions. Calculate amount of oxygen required for converting to nitrate ions.
A	355 mg/L
В	400 mg/L
С	440 mg/L
D	430 mg/L
Ans	swer Key: A
Q4	41 Uniformity co-efficient of filter sand is given by
:	TI Company to employ of more same to given by
A	D_{50}/D_{5}
В	D_{50}/D_{10}
С	D_{60}/D_{5}
D	D_{60}/D_{10}
H.	swer Key: D

Q4 :	Q42 One liter of sewage, when allowed to settle for 30 minutes gives a sludge volume of 27 cm ³ . If the dry weight of this sludge is 3.0 grams, then its sludge volume index will be		
A	9		
В	24		
С	30		
D	81		
Ans	swer Key: A		
Q4 :	Calculate amount of oxygen required for reacting with two moles of ammonium ions for converting to nitrate ions.		
A	4 moles		
В	3 moles		
С	2 moles		
D	1 mole		
Ans	swer Key: A		
Q4 :	14 Calculate R-log removal value for 99.0% removal.		
A	2		
В	1.5		
C	3		
D			
Ans	swer Key: A		
Q4 :	Q45 What is the percentage of remaining pathogen concentration at 99% removal after 5 minutes of contact time during chlorination? (Assume K = 0.06/min)		
A	70%		
В	66%		
С	74.08%		
D	65%		
Ans	swer Key: C		
Q 4	An experiment shows that a concentration of 0.1 mg/L of HOCl yield an 89% killing of bacteria in 5 minutes. Calculate disinfection rate constant. Assume that Chick's Law and Watson's Law hold.		
A	0.3/min		
В	0.366/min		
С	0.4416/min		
D	0.40/min		

An	swer Key: C
Q2:	For the following information (Equation of isotherm of Anthracene on alumina: $Q = [22C_t] / [1+35 \ C_t]$ where Q is mol Anthracene/kg alumina; $C_t = \text{mol Anthracene} / L$ Liquid), calculate remaining Anthracene concentration (mol /L) for 0.1 mol /kg adsorption capacity?
A	0.00054 mol/L
В	0.0054 mol/L
С	0.02 mol/L
D	0.054 mol/L
An	swer Key: B
Q2:	The chloride content of treated water for public supplies should not exceed
A	100 ppm
В	150 ppm
С	200 ppm
D	250 ppm
An	swer Key: D
Q ² :	microorganisms. Chlorine dosage (mg/L) 0.1 0.5 1.0 1.5 2.0 2.5 Chlorine residual (mg/L) 0.0 0.4 0.8 0.4 0.9 1.4 Calculate chlorine dose at breakthrough point
A	0.5 mg/L
В	1.5 mg/L
C	2.0 mg/L
D	10 mg/L
An	swer Key: B
Q:	50 Select the correct sequence of different phases of biomass curve:
A	Lag phase → Log growth phase → stationery phase → endogenous phase
В	Lag phase → endogenous phase → stationery phase → log growth phase
С	Endogenous phase → Lag phase → stationery phase → Log growth phase
D	Log growth phase → Lag phase → endogenous phase → stationery phase
An	swer Key: A

Q51 Order 4 solutions in increasing order of their BOD values

Industrial water < river water < tap water < bottled water

<u> </u>		
В	Tap water < bottled water < river water < industrial water	
С	Bottled water < river water < tap water < industrial water	
D	Bottled water < tap water < river water < industrial water	
Ans	swer Key: D	
Q5 :	2 Coal based thermal power stations pollute the atmosphere by adding	
A	NO _X and SO ₂	
В	NO_{X} , SO_{2} and SPM	
С	NO_{X} , SO_{2} , SPM and CO	
D	NO_{X} , SPM and CO	
Ans	ewer Key: B	
Q5 :	Which one of the following expresses the degree of disturbance of undisturbed clay sample due to remolding?	
A	Thixotropy	
В	Dilatancy	
С	Sensitivity	
D	Plasticity	
Ans	swer Key: C	
Q5 :	4 Given the coefficient of curvature = 1.4, D ₃₀ = 3 mm, D ₁₀ = 0.6 mm. Based on this information of particle size distribution for use as sub grade, this soil is classified as	
A	Uniformly - graded sand	
В	Well - graded sand	
С	Very find sand	
D	Poorly - graded sand	
Ans	swer Key: B	
Q:	5 In laboratory compaction tests, the optimum moisture content of soil decreases	
A	With increase of compaction energy and with decrease of coarse grains in the soil	
В	With decrease of compaction energy and with increase of coarse grains in the soil	
С	With increase of both compaction energy and coarse grains in the soil	
D	With decrease of both compaction energy and coarse grains in the soil	
Answer Key: C		
Q5 :	Q56 To provide safety against piping failure, with a factor of safety of 5, what should be the maximum permissible exit gradient for soil with specific gravity of 2.5 and porosity of 0.35?	

A	0.176
В	0.195
С	0.882
D	0.980
Ans	swer Key: B
Q5:	From a flownet which of the following information can be obtained? 1. Rate of flow 2. Pore water pressure 3. Exit gradient 4. Permeability Select the correct answer using the codes given below:
A	1,2,3 and 4
В	1,2 and 3
С	2,3 and 4 only
D	1 only
Ans	swer Key: B
Q5:	The initial and final void ratios of a clay sample in a consolidation test are 1 and 0.5, respectively. If the initial thickness of the sample is 2.4 cm, then its final thickness will be
A	0.6 cm
В	0.9 cm
С	1.2 cm
D	1.8 cm
Ans	swer Key: D
Q5:	If Δp is increment of pressure on a normally consolidated saturated soil mass, as per Terzaghi's theory at the instant of application of pressure increment i.e., When time t =0, what is the pore pressure developed in the soil mass?
A	Zero
В	Very much less than Δp
С	Equal to Δp
D	Greater than Δp
Ans	swer Key: C
_	
Q6 :	Which one of the following pairs is not correctly matched?
A	Critical void ratio - Rapid draw down
В	Swedish arc - Stability of slopes
С	Critical height - Stability number
D	Base failure - Soft clay

Q61 Consider the following statements: 1. Dynamic cone penetration test for site investigation is based on the principle that elastic shock waves travel in differentials at different velocities. 2. Electrical resistivity method of subsurface investigation is capable of detecting only the strata having different eleresistivity. 3. In-situ vane shear test is useful for determining the shear strength of very soft soil and sensitive clays and is unsuit sandy soil. Which of these statements is/are correct? A	
B 2 and 3 C 1 and 3 D 2 alone Answer Key: B Q62 During a sampling operation, the drive sampler is advanced 600 mm and the length of the sample recovered is 525 m	etrical
C 1 and 3 D 2 alone Answer Key: B Q62 During a sampling operation, the drive sampler is advanced 600 mm and the length of the sample recovered is 525 m	
D 2 alone Answer Key: B Q62 During a sampling operation, the drive sampler is advanced 600 mm and the length of the sample recovered is 525 m	
Answer Key: B Q62 During a sampling operation, the drive sampler is advanced 600 mm and the length of the sample recovered is 525 m	
Q62 During a sampling operation, the drive sampler is advanced 600 mm and the length of the sample recovered is 525 m	
the recovery ratio of the sample?	nm. What is
A 0.125	
B 1.140	
C 0.143	
D 0.875	
Answer Key: D	
Q63 : A consolidated drained triaxial test was conducted on a granular soil. At failure $\frac{\sigma_1}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_2}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_1}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_2}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_1}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_2}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_2}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_1}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_2}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_2}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_2}{\sigma_3}$ = 4.6, the value of $\frac{\sigma_3}{\sigma_3}$ = 4.6	l is
A 40°	
B 45°	
C 53°	
D 65°	
Answer Key: A	
Q64 Given that for a soil deposit, K_0 = earth pressure coefficient at rest; K_a = active earth pressure coefficient; K_p = pass pressure coefficient; μ = Poisson's ratio. The value of $(1-\mu)/\mu$ is given by K_a/K_p	ive earth

K_o/K_a В K_p/K_a C $1/K_{o}$ D Answer Key: **D**

Q65 A vertical cut is to be made in a saturated and submerged clay with $c=15~kN/m^2$, $\gamma_{sat}=18.5~kN/m^3$, and $\gamma_w=10~kN/m^3$. What is the theoretical depth to which the clay can be excavated without side collapse?

A	3.2 m	
В	3.5 m	
C	6.0 m	
D	7.0 m	
	swer Key: D	
Q6 :	66 The minimum bearing capacity of a soil under a given footing occurs when the groundwater table at the location is at	
A	The base of the footing	
В	The ground level	
С	Depth equal to one-half the width of the footing	
D	A depth equal to the width of the footing	
Ans	swer Key: B	
Q(
A	Plastic equilibrium	
В	Radial shear	
C	Elastic equilibrium	
D	Linear shear	
An	swer Key: C	
Q(A 30 cm diameter friction pile is embedded 10 m into a homogeneous consolidated deposit. Unit adhesion developed between clay and pile shaft is 4 t/m ² and adhesion factor is 0.7. The safe load for factor of safety 2.5 is	
A	9.1 t	
В	15.1 t	
С	16.5 t	
D	30.7 t	
Ans	swer Key: B	
Q6:	9 Hydrated lime Ca(OH) ₂ can be effectively used for stabilization of	
A	Sandy soils	
В	Silty soils	
С	Plastic clayey soils	
D	None of these	
Ans	Answer Key: C	

Q7	Which of the following is true in case of railway track maintenance?
A	Shovel is used to lift rail while Rail tongs is used to handle ballast
В	Rail tongs is used to lift rail while Shovel is used to handle ballast
С	Shovel can be used to correct track alignment as well as to lift rail
D	Rail tongs can be used to handle ballast as well as to remove dog spikes
Ans	wer Key: B
Q7	1 One degree of curve is equivalent to
A	1600/R
В	1700/R
С	1720/R
D	1820/R
An	swer Key: C
Q7:	The number of sleepers used for rails varies from, Where 'n' length of rail in 'm'
A	(n+1) to (n+4)
В	(n+3) to (n+6)
C	(n+2) to (n+7)
D	(n+4) to (n+8)
Ans	ewer Key: B
Q7:	The reception signal is
A	Advanced starter only
В	Starter only
C	None of the other options provided
D	Both Advanced starter and Starter
Ans	swer Key: C
Q7:	4 Runway threshold is indicated by series of parallel lines starting from a distance of
A	3m from runway end
В	6m from runway end
С	10m from runway end
D	15m from runway end
Ans	swer Key: B

Q7:	Q75 As per ICAO, for airports serving big aircrafts, the crosswind component should not exceed:	
A	15 Kmph	
В	25 Kmph	
С	35 Kmph	
D	45 Kmph	
An	swer Key: C	
Q7:	Q76 Airport elevation is the reduced level above Mean Sea Level of:	
A	Control tower	
В	Highest point of the landing area	
С	Lowest point of the landing area	
D	None of these	
An	swer Key: B	
Q7:	77 Beaufort Scale is used to determine	
A	Strength of winds	
В	Direction of winds	
C	Height of aircrafts	
D	None of these	
Ans	swer Key: A	
Q7:	78 The type of transition curves generally provided on hill roads, is	
A	Circular	
В	Cubic Parabola	
С	Lemniscate	
D	Spiral	
Ans	swer Key: D	
Q7:	79 If x% is the gradient of an alignment and y% is the gradient after proper super elevation along a curved portion of a highway, the differential grade along the curve is,	
A	(x+y)%	
В	(x-y)%	
С	(y-x)%	
D	(y+x)%	

Ans	Answer Key: C	
Q8 :	The maximum number of vehicles beyond which the rotary may not function effectively is	
A	500 Vehicles per hour	
В	500 Vehicles per day	
С	5000 Vehicles per hour	
D	5000 Vehicles per day	
Ans	swer Key: C	
Q8 :	The diagram which shows all important physical conditions of an accident location like roadway limits, bridges, trees and all details of roadway conditions is known as	
A	Pie Chart	
В	Spot Maps	
С	Condition Diagram	
D	Collision Diagram	
Ans	swer Key: C	
Q8 :	Q82 The increase in traffic Volume, due to the general increase in the number of transport Vehicles from year to year is known as,	
A	Normal traffic growth	
В	Generated traffic	
С	Development traffic	
D	Existing traffic	
Ans	swer Key: A	
Q8 :	33 In hill roads, minimum sight distance required is	
A	Stopping Sight Distance	
В	Passing Sight Distance	
С	Braking Distance	
D	None of these	
Ans	swer Key: A	
Q8 :	Hygroscopic water is defined	
A	The water held by the soil under capillary action	
В	The readily available water for the use of plants	
С	The water which is absorbed by the particles of dry soil from the atmosphere	
	Total water content of the soil filled with water	

D		
	swer Key: C	
Q8 :	Q85 Pick up the correct sequence of the parts of a canal system:	
A	Main canal-distributary-branch canal-head works-minor	
В	Head works-main canal-branch canal-distributary-minor	
С	Head works-main canal-branch canal-minor-distributary	
D	Head works-branch canal-main canal-distributary-minor	
Ans	swer Key: B	
Q8 :	6 Small hydroelectric project generates power	
Α	< 25 MW	
В	< 100 MW	
С	< 550 MW	
D	< 1000 MV	
Ans	swer Key: A	
Q8 :	7 The ratio of the peak load to the installed capacity of the plant is known as	
A	Load factor	
В	Plant factor	
С	Utilization factor	
D	All the options are correct	
Ans	swer Key: C	
Q8 :	8 For nine number rain gauge stations with an error of 10% in the estimation of mean of the rainfall, the coefficient of variation of rainfall Cv obtained as:	
A	10	
В	20	
C	30	
D	40	
Ans	swer Key: C	
Q8 :	The shape of recession limb of a hydrograph depends upon	
A	Basin characteristics only	
В	Storm characteristics only	
С	Both basin characteristics and storm characteristics	

D	None of these
Ans	swer Key: A
Q 9	The most accurate method of finding the average depth of rainfall over an area is
A	Isohyetal method
В	Arithmetic mean method
C	Thiessen polygon method
D	All of these
Ans	swer Key: A
Q9 :	For a synthetic unit hydrograph the width of the unit hydrograph at 50% peak discharge is 87.5 h then the width of unit hydrograph in h at 75% peak discharge would be
A	10
В	30
С	50
D	100
Ans	swer Key: C
Q 9	92 W-index will be always
A	Equal to ϕ -index
В	More than ϕ -index
С	Less than ϕ -index
D	A constant fraction of ϕ -index
Ans	swer Key: C
Q 9	Hydrodynamic pressure due to earthquake acts at a height of, (where H is the depth of water)
A	$3H/4\pi$ above the base
В	$3H/4\pi$ below the water surface
С	$4H/3\pi$ above the base
D	$4H/3\pi$ below the water surface
Ans	swer Key: C
Q 9	94 Select the correct statement
A	A meander increase the river length but a cut off reduces the river length
В	A cut-off increases the river length but a meander reduces the river length

C	Both meander and cut-off increases the river length
D	Both meander and cut-off decrease the river length
Ans	swer Key: A
Q 9	5 Select the incorrect statement
A	Intensive irrigation should be avoided in areas susceptible to water logging
В	Extensive irrigation should be adopted in areas susceptible to water logging
С	Lift irrigation increases water logging
D	All of these
Ans	swer Key: C
Q9 :	26 A divide wall is provided
A	At right angle to the axis of weir
В	Parallel to the axis of weir and upstream of it
С	Parallel to the axis of weir and downstream of it
D	At an inclination to the axis of weir
Ans	swer Key: A
Q9 :	7 The relationship between height (d) of the crest wall above the downstream bed level and the crest wall top (B) width for a rectangular Sarda fall is
A	$B = \sqrt{d}$
В	$B = 0.55 \sqrt{d}$
С	$B = 1.55\sqrt{d}$
D	$B = 10.55\sqrt{d}$
Ans	swer Key: B
Q9 :	8 In case of non-availability of space due to topography, the most suitable spillway is
A	Straight drop spillway
В	Shaft spillway
С	Chute spillway
D	Ogee spillway
Ans	swer Key: B
Q 9	9 For the upstream face of an earthen dam, the most adverse condition for the stability of slope is
A	Sudden drawdown

В	Steady seepage
C	During construction
D	Sloughing of slope
Answer Key: A	

Q100 If the coefficient of permeability and kinematic viscosity of water found as 4.17 cm/s and 0.01 cm²/s respectively, then the intrinsic permeability in cm² would be

A 1.25 X 10⁻⁵

B 4.25 x 10⁻⁵

C 8.25 x 10⁻⁵

D 12.25 x 10⁻⁵

Answer Key: B

